
Geographic Information Technology Training Alliance (GITTA) presents:

Structured Query Language SQL

Responsible persons: Anca Dobre, Dominique Schneuwly, Samuel

Wiesmann, Susanne Bleisch





Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  1

Table Of Content

1. Structured Query Language SQL ............................................................................................................  2
1.1. SQL overview ................................................................................................................................... 3

1.1.1. SQL Concepts ............................................................................................................................ 3
1.1.2. Data Definition (DDL) ..............................................................................................................  3
1.1.3. Data Manipulation (DML) ........................................................................................................  4
1.1.4. Data control (DCL) ...................................................................................................................  4

1.2. Creation and modification of tables .................................................................................................  5
1.2.1. Create tables ..............................................................................................................................  5
1.2.2. Changing the table structure ...................................................................................................... 6
1.2.3. Deleting tables ...........................................................................................................................  6

1.3. Basic database queries ...................................................................................................................... 7
1.3.1. SELECT-FROM-WHERE clause .............................................................................................. 7
1.3.2. Multiple conditions ....................................................................................................................  7
1.3.3. Comparison operators ................................................................................................................  8
1.3.4. Pattern matching and arithmetical operators .............................................................................  8
1.3.5. Nested queries ............................................................................................................................ 9
1.3.6. Join ........................................................................................................................................... 10
1.3.7. Non-relational constructs .........................................................................................................  11
1.3.8. Set operators ............................................................................................................................  12
1.3.9. Summary ..................................................................................................................................  13
1.3.10. Database queries ....................................................................................................................  13

1.4. SQL Insert, Delete and Update ......................................................................................................  16
1.4.1. Inserting tuples ........................................................................................................................  16
1.4.2. Deleting tuples .........................................................................................................................  16
1.4.3. Updating tuples ........................................................................................................................  16
1.4.4. eLSQL Exercise 'Insert, Delete und Update' ...........................................................................  17

1.5. Usage of SQL .................................................................................................................................  19
1.6. Summary .........................................................................................................................................  20
1.7. Recommended Reading ..................................................................................................................  21
1.8. Bibliography ...................................................................................................................................  22



Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  2

1. Structured Query Language SQL
SQL (Structured Query Language) is a query language for relational databases. The roots of SQL go back to
SQUARE, a more mathematical oriented language and SEQUEL, a predecessor of SQL from the seventies.
There exist different standards (ISO and ANSI) of SQL, but the most common one is SQL-92. The latest
standard SQL-99 (or SQL3) even includes XML. In the following Units we will give a simple overview of
the most important SQL functions.

This lesson is geared to the SQL-99 standard  (GULUTZAN et al. 1999). However, this standard
is not implemented by all database systems constantly. For example, some commands are named
differently or their syntax is constructed differently. For this reason, SQL commands from
this lesson might not work in certain systems. If you encounter problems, please check in the
respective user manuals whether or not the command is supported at all, whether it is named, or
constructed differently. Most database systems also go beyond the standard. However, caution
is advised with these SQL extensions since they can vary considerably from system to system.

Learning Objectives

• You understand the basic SQL concepts and are able to explain the use of SQL in the areas of data
definition, data manipulation, and data control.

• You are able to use SQL to create, modify, and delete tables.

• You can express simple and complex queries with the help of SQL and know how SQL queries are used
in nesting or in combinations. You are also able to correctly apply arithmetic operators and set operators
within SQL queries.

• You master SQL to add, modify, and delete data tuples.



Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  3

1.1. SQL overview
SQL (Structured Query Language) is one of the main reasons for the commercial success of relational databases.
The ANSI (American National Standards Institute) and the ISO (International Standards Organization)
developed in 1986 the first SQL-version with the name SQL-86 or SQL1. In 1992 a second and more extended
standard with the name of SQL-92 or SQL2 was established. The latest standard includes XML, dates from
1999 and is therefore called SQL-99 or SQL3. With the use of SQL in most commercial database systems
the migration from one system to another has become easier for the user. In the ideal case, the user need not
consider which system is used because query formation in SQL remains the same.

1.1.1. SQL Concepts

SQL is a descriptive, entity-oriented query language for data manipulation with its roots in relational algebra.
Today SQL is used either as a stand-alone programming language or within other languages like C, C++, Java,
ADA, COBOL, FORTRAN, PL/1, PASCAL etc.
SQL actually consists of three sub languages:

• DDL - Data Definition Language: Used for creating databases and tables and for maintaining the
structure.

• DML - Data Manipulation Language: Used for accessing and extracting data from a database (add,
update, delete etc.).

• DCL - Data Control Language: Used to control access to the database and therefore essential for the
security system.

In most implementations of SQL functions from other programming languages (if-clauses, iterations etc.) have
been added. Some SQL-versions, such as Oracle's PL/SQL, can therefore be seen as independent programming
languages.

1.1.2. Data Definition (DDL)

In SQL the terms table, row and column are synonyms for relation, tuple and attribute. To create a new relation
scheme in the database we start with the create table-command. Together with the creation we must
provide the relations attributes and their domains (e.g. number, char or date). Additional we can define other
constraints, checks and keys etc. The keyword NOT NULL tells the system that this attribute cannot be empty.
Primary keys are declared using a special "table constraint"-clause.

Code-Beispiel: Create Table

This example shows how a new table is created in SQL. In the intermediate lesson we take a closer look at all
the SQL statements. For the moment you don't have to understand these statements in detail.



Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  4

1.1.3. Data Manipulation (DML)

There are two sorts of data manipulation commands in SQL. The first type are only used for database queries
and do not alter the tables. The second type are used for adding, updating or deleting values in a database.
We will take a closer look at the different data manipulation commands in the following units.

• Basic database queries

• SQL Insert, Delete and Update

1.1.4. Data control (DCL)

Data control commands in SQL control access privileges and security issues of a database system or parts of
it. These commands are closely related to the DBMS (Database Management System) and can therefore vary
in different SQL implementations.
Some typical commands are:

• GRANT - give user access privileges to a database

• DENY - deny user access

• REVOKE withdraws access privileges given with the GRANT or taken with the DENY command

Since these commands depend on the actual database management system (DBMS), we will not cover DCL
in this module.



Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  5

1.2. Creation and modification of tables
In this unit, we will show you how to create, modify, and delete tables using SQL commands.

1.2.1. Create tables

With CREATE TABLEa new table can be created in a database. The command has the following basic
structure:
CREATE TABLE <table name> (<Attribute definitions and constraints>);
The table name must be unique within the current database or the current scheme.

Attribute definition
Attributes are defined by a name and a datatype, whereas the name must be unique within the table. These
specifications are compulsory for all attributes.
The order of the attributes at definition corresponds to the order of the columns in the table created. If a certain
order is aspired, you need to define it at the creation of the table. Unless there are no changes made to the table
(see Change table structure, the order stays this way.

Constraints
There are two types of constraints: table constraints and attribute constraints. The difference is that attribute
restrictions apply to only one attribute whereas table constraints may apply to more than one attribute but this
need not be. With these restrictions, the range of values of the attributes can be restricted or it is prevented that
the entered values are not allowed. A record cannot be recorded if it violates a restriction.
There are four kinds of constraints:

• UNIQUE - the attribute or the attribute combination need to be unique within the table

• PRIMARY KEY - the attribute or the attribute combination is the primary key of the table

• FOREIGN KEY - the attribute is a foreign key

• CHECK - Condition that must be fulfilled for an attribute or an attribute combination

The constraints can be named. However, this is not necessary.

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

In this example, a table is added to a database. That table is linked to an already existing table. The difference
between an attribute and a table constraint can be seen in the SQL command. projekt_ID and leiter_ID have
an attribute constraint (the constraint is written directly behind the attribute definition). projekt_ID has the
constraint PRIMARY KEY - it is therefore the primary key of this table, i.e. the attribute must be unique and
must not be NULL. leiter_ID has the constraint NOT NULL (special case of a CHEK constraint), meaning it
needs to hold a value at all times.
The link to the existing table is defined as a table constraint (FOREIGN KEY) and is named (projektleiter).
This constraint could also be defined as an attribute constraint since it only includes one attribute.
The example shows that there are basically no difference between attribute and table constraints as long as only
one attribute is affected. It is about two different ways of collecting constraints.

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_create.swf


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  6

1.2.2. Changing the table structure

With ALTER TABLE the structure of a table can be modified. The attributes and constraints that were
created with CREATE TABLE can be modified, new ones can be added, and existing ones can be deleted. The
command has the following syntax:
ALTER TABLE <table name> <Change> ;
whereas <Change> can include various commands:

• ADD [COLUMN] <Attribute defintion>
Add an attribute (Attribute definiton as in CREATE)

• ALTER [COLUMN] <Attribute name> SET DEFAULT <Standard value>
define a new standard value

• ALTER [COLUMN] <Attribute name> DROP DEFAULT
delete current standard value

• DROP [COLUMN] <Attribute name> {RESTRICT | CASCADE}
delete an attribute

• ADD <Table constraint>
add new table constraint (table constraint as in CREATE)

• DROP CONSTRAINT <Table constraint>
delet a table constraint

With the above commands, attributes and constraints can be added or deleted respectively. In addition, standard
values for the attributes can be set or deleted. There are other SQL commands that are not listed here.
Default SQL does not include any commands for modification or renaming of attributes. This would lead to
problems when data already exists. However, in some databases these commands are included (e.g. MODIFY
or RENAME). The syntax is different in every system though. If there are no data, the attribute to be changed
can be delete and reattached.

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

In this example, an attribute is added to a table. The dataset shown contains NULL for this attribute because
there was no value assigned yet. Afterwards, this attribute is delted from the table again. The keyword
RESTRICT provokes that only attributes that are not linked to other tables can be deleted (foreign key).
Alternatively, the keyword CASCADE can be used. Using this, not only the designated column but also the
linked column in the other table is delted.

1.2.3. Deleting tables

With DROP TABLE an existing table can be deleted. The data and structure of the table are deleted.
The command has the following syntax:
DROP TABLE <Table name>;

Attention: With DROP TABLE the table structure is deleted with all the data. In most cases,
this cannot be undone!

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_alter.swf


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  7

1.3. Basic database queries
In this Unit we will take a closer look at how to do database queries using SQL.

1.3.1. SELECT-FROM-WHERE clause

In languages like SQL data from a certain domain (FROM) that match some conditions (WHERE) are selected
and presented (SELECT). The result can be seen as a new relation.
The syntax of a basic SQL query is:
SELECT <select-list>
FROM <from-list>
WHERE <condition>
In this syntax the...

• <select-list> contains the names of the attributes (columns) values to be returned.

• <from-list> is the list of the relations (tables) used for the query.

• <condition> is an expression that identifies the tuples that we are looking for.

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

We saw the basic statements that are needed for making queries with SQL. Of course there are extensions
which allow more specific or more flexible queries.
These extensions include:

• multiple conditions (in boolean AND/OR combination)

• complex conditions (subqueries, joins etc.)

• pattern matching and arithmetical operators

• non-relational functions (sort, group, aggregate)

• set operators (union, intersect, minus)

1.3.2. Multiple conditions

In SQL it is possible to have multiple conditions and combine them with boolean operators (AND, OR). For
negating a condition the NOT operator is used. The data is selected if the whole condition returns as TRUE.

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

Other examples of multiple conditions:

• PLZ = 8000 AND NOT Last name = 'Schmidt'

• PLZ = 8000 OR PLZ = 8006

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic1b.swf
http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic2.swf


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  8

• (Last Name = 'Müller' OR Last name = 'Meier') AND Place = 'Zürich'

In SQL queries (e.g. conditions) text must be set in single quotation marks. Numerical values
are written without single quotation marks. This can be seen in the examples.

Instead of a long chaining with AND there is also the possibility to compare several attributes simultaneously
with each other:
First name = 'Ursula' AND Last name = 'Müller' newLine space="long"/> can
be written as:
(First name, Last name) = ('Ursula', 'Müller')

1.3.3. Comparison operators

SQL supports different comparison operators. They can be used to compare attributes with constants or with
other attributes. DIf an operator is used to compare an attribute with a constant, we talk about restriction. If the
operator is used to compare two attributes, then we talk about a join. With joins, data from different relations
can be compared and combined. Of course only attributes with the same domain (value range) can be compared.
The following comparison operators for numerical attributes are supported:

• = equal

• > greater

• < less

• >= greater than or equal

• <= less than or equal

• <> not equal

• BETWEEN between

Conditions usually have the syntax <atribute> <operator> <value>. The operator BETWEEN
has a somehow different syntax (see the example).
Other comparison operators are discussed in the next paragraphs.

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

If in the SELECT-clause a star (*) instead of an attribute list is used, then all attributes of the
relations specified in the FROM part of the query are displayed.

1.3.4. Pattern matching and arithmetical operators

Pattern matching using LIKE
The LIKE condition allows you to use wildcards in the WHERE clause of an SQL statement. This allows
pattern matching.
The patterns that you can choose from are:

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic4.swf


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  9

• "%" allows you to match any string of any length (including zero length)

• "_" allows you to match on a single character

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

NOT LIKE examines whether the given section is not present in the string.

Arithmetical operators
The arithmetical standard operators for addition (+), subtraction (-), multiplication (*) and division (/) can all
be used for numerical constant or for attributes with a numerical domain. This allows attributes in a request
to be calculated together.

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

In the above example the result is a relation with three attributes. The third attribute is named "Usury" since
"Price/Size" is not a good name and stands for the price per unit. We define that if it lies over 15, it is overpriced
("Usury").
Arithmetical operators can be used in the SELECT part of a request or in the conditions.

In the SELECT or FROM part of a request, attributes and relations can be given a different
name by the command  AS:  <Attribute/Relation> AS <new name>  (The
key word  AS can be omitted). This can be used to give a calculated value a meaningful name
(see example), or to make SQL requests easier to read.

1.3.5. Nested queries

Nested queries
Conditions are usually made of an attribute, a value and an operator that forms the condition (eg. Name="John").
But the values themselves don't have to be constants, they can be the result of another sub-query. We then talk
about nested queries. Using the IN-operator nested queries can be as deep as necessary.
There are three types of sub-queries that differ in their result:

• Sub-queries that return a value (one column and one row)

• Sub-queries that return a row

• Sub-queries that return several rows

If only one value or row is returned the normal comparison operators can be used.
If more than one row is returned special operators are used:

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic6.swf
http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic7.swf


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  10

• IN  examines whether the value exists in the sub-query

• <Comparison operator> ALL  the condition must return TRUE for all rows in the sub-query

• <Comparison operator> ANY (SOME)  the condition must return TRUE for at least one
row in the sub-query

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

Sub-queries can also be used in the FROM part of a query. Thus, a relation can be compiled
specifically for a request. The sub-query must be assigned a name with AS:  (<Sub-
query>) AS <Name>

1.3.6. Join

It happens often that data from multiple realtions are required in a query. For this, relations need to be linked.
The identical attributes (foreign keys) in both relations are linked.
There are two ways to link relations in queries:

in the WHERE part
In this option, the identical attributes are linked with the comparison operator and inserted as "condition" (not
a real condition) into the WHERE part of the query.

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

Basically, e.g. a < can also be used for a join. However, this is usually used in combination with
a join condition with = since such a join alone does not make sense.

in the FROM part
Another possibility is to do the join in the FROM part of a query. This makes more sense because the actual
search criteria (conditions in the WHERE part) are separated from the table joins.
The following commands are available for this purpose:

• <Relation> JOIN <Relation> USING (<Attribute>)
the relations are joined by an attribute with the same name in both tables

• <Relation> NATURAL JOIN <Relation>
automatically joins all attributes that are of the same name in both relations.

• <Relation> JOIN <Relation> ON <Attribute> <comparison operator>
 <Attribute>

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic3.swf
http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic5.swf


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  11

with this command, you can decide by which attributes the relations should be joined and which operator
is to be used (there can be more than one join as well).

Using these commands, the example from above would look like the following:
SELECT name, surname, newspaper_name
FROM customer JOIN subscription USING (CustNo);
or
SELECT name, surname, newspaper_name
FROM customer JOIN subscription ON customer.CustNo =
 subscription.CustNo;
or
SELECT name, surname, newspaper_name
FROM customer NATURAL JOIN subscription;
The commands above only return datasets present in both relations. Should all datasets of a relation be returned
with the corresponding datasets of the second relation, the following commands are applied:

• <Table> RIGHT OUTER JOIN <Table> USING (<Attribute>)
all datasets of the right relation and the corresponding datasets of the left relation

• <Table> LEFT OUTER JOIN <Table> USING (<Attribute>)
all datasets of the left relation and the corresponding datasets of the right relation

If there are no joins to be made in the left relation using RIGHT OUTER JOIN, NULL is returned for the
attributes of this relation. The same is true for the opposite (using LEFT OUTER JOIN).

1.3.7. Non-relational constructs

ORDER BY clause
SQL contains some operators that have nothing to do with relational algebra. For example an entity per
definition does not have an order. Nevertheless in SQL you can order your tables using the ORDER BY clause.
Using the keywords ASC and DESC the sorting can either be ascending or descending. If no keyword is used,
the sorting is in ascending order by default.

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

In this example all customers are sorted in ascending order according to their names and as a second sort
parameter in descending order according to their surname. The ASC keyword is default and could therefore
be omitted.

GROUP BY clause
Grouping methods are used to form a subset of tuples of a relation according to certain criteria. These subsets
can then be used to calculate statistical parameters such as average, sum etc. The value of a certain attribute
serves as grouping criteria. All tuples with the same value for this attribute are grouped. These groups can be
used in further processes (a special case would be another grouping to be able to use groups of groups). For
this, so-called group functions are used. They can only be applied to numerical attributes.

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic8.swf


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  12

The group functions that SQL usually offers are the following:

• min returns the smallest value ignoring null values

• max returns the largest value ignoring null values

• sum returns the sum of all values ignoring null values

• count returns the number of rows

• avg returns average value ignoring null values

• stdev returns the standard deviation ignoring null values

• varriance returns the variance ignoring null values

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

In this query we want to find the customers that spent more than 250 SFR for all their small advertisings (a
small add is an add that costs less than 300 SFR). In a first step restriction is applied: A004 is sorted out because
it is not a small add (price is over 300 SFR). The remaining tuples are grouped by customer and those with a
sum of over 250 SFR are selected (customer groups 002 adn 005 are sorted out because they have not reached
the limit yet).
Requests including a GROUP BY clause are processed as follows: First, the condition in the WHERE part is
processed (if applicable). Then, the specified columns are grouped. With the condition in the HAVING part
of the request, another condition can, if necessary, be specified for the grouped attribute values. Due to this
order, you can see that there cannot be a group function in the condition of the WHERE part of the request
since there has been no grouping yet. However, all attributes appearing in the request must be either in the
GROUP BY clause or in a group function.

1.3.8. Set operators

Set operators are used to connect different queries and produce a resulting relation. Of course these set
operations are only allowed if the attributes match (eg. the domain or the number of attributes etc.). The
following set operators are used to join together sets of tuples. They might already be known from the algebra
of sets.

• union produces a union of different sets

• intersect produces an intersection of different sets.

• minus subtracts one set from another one.

By default, duplicates are not returned using a request with these set operators. If duplicates need to be returned,
the keyword ALL must be put behind UNION, INTERSECT or EXCEPT.

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic9.swf
http://www.gitta.info/RelQueryLang/en/multimedia/SQL_Basic10.swf


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  13

This query is used to find all names of customers who have a magazine subscription and who have placed an
advertising in this magazine.

1.3.9. Summary

In this Unit it was shown step by step how SQL statements are phrased. To show all the parts in context a
complete SQL request is listed below.
Complete syntax of a SQL request:
SELECT [DISTINCT | ALL]
<Attribute> [AS <Name>] [, ...] | *
FROM <Relation> [, <Relation>]
[WHERE <Condition>]
[GROUP BY <Column> [HAVING <Condition>]
[ORDER BY <Column> [ASC | DESC], [, ...]];
A large part of this syntax is optional and only needs to be stated only in certain cases. Teh simplest syntactically
correct request has only a SELECT- and a FROM-part. Only with more complex problems, all parts are used
in the same request.

It is possible that certain datasets appear more than once in the result of a request. The keyword
DISTINCT is used to delete such duplicates from the result. The keyword ALL is used to
prevent the duplicates from deletion. This is the default and does not have to be stated explicitly.

1.3.10. Database queries

This self assessment should give you the possibility to test different SQL queries and get to know them more
in depth. We use the following sample database (please leave this overview open during the exercise).
Find the correct solution tables for the following SQL queries. Put your solutions (either Word or PDF format)
on the discussion board and check the other solutions.
You are encouraged to comment on other postings or to ask questions using the discussion board. Please do
not email the tutor directly so that others can also benefit from your questions and the tutors answer.

SQL Requests

•

•

http://www.gitta.info/RelQueryLang/en/multimedia/Datenbasis.html


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  14

•

•

•

•

Solutions to the exercises

download solutions

This self assessment uses the same  sample databaseas before but now using an interactive SQL tool called
WebSQL. This tool was developed by the GITTA-partner IFI (Institute of informatics, University of Zurich).
Please contact your tutor if you didn't get your account information or if the login doesn't work.

Some remarks about the WebSQL interface

• The semicolon at the end of a SQL query or SQL command is optional.

• On the tab 'Dataset' you find information about the content of the original database.

• You changes to the database are saved and are available at your next login.

• On the tab 'Settings' you can change your user information and reset the database to its original state.
All your changes will be deleted. Note that this command is irreversible.

• On the tab 'Protocol' you find a list of all your SQL queries.

• Please contact your tutor and not the IFI for technical questions.

The goal of this self assessment is that you are able to form SQL queries that answer the questions below. Write
a report where you explain your queries and comment on the solutions and put this document on the discussion
board. If you have any questions please post them also on the discussion board. Of course you are welcome to
check the other students solutions, comment on them or answer questions from other students.

http://www.gitta.info/RelQueryLang/en/download/Loesung_SQLAnfrage.pdf
http://www.gitta.info/RelQueryLang/en/multimedia/Datenbasis.html
http://captiva.ifi.unizh.ch:8085/websql/


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  15

Aufgaben

• Select the names of all employees and sort them in descending order (Z to A).

• Find the names of all employees who live in Dübendorf and earn more than 30'000 Fr.

• Select all children whose parents are employees and live in Zurich. Sort the result by birth date.

• Find the total amount of time that is spent on all projects in the research (Forschung) department. Use
one query only!

• How many children has the manager of the administration (Verwaltung) department?

• Find projects of Zurich where the total amount of work is over 50 hours?

• Create your own SQL query and post the query (in word form) together with the solution on the
discussion board (under the topic 'eLSQL').

• Solve some queries that other students have posted.

Possible solutions

download solutions

http://www.gitta.info/RelQueryLang/en/download/Loesung_eLSQL1.pdf


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  16

1.4. SQL Insert, Delete and Update
To keep a database accurate we have to be able to not only create and delete tables but to also modify the
content. In SQL this is done with the commands INSERT, DELETE and UPDATE.

1.4.1. Inserting tuples

In its most basic form the INSERT INTO command adds a tuple to an existing table.
The syntax is:
INSERT INTO <Tablename> (<Attribute list>)
VALUES (<Valuelist>);
Please note that the attribute list can be omitted if a complete tuple is inserted.

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

With the INSERT command shown above, new tuples are inserted into the database. Often, the values to be
inserted are the result of a request. For this situation the command can be changed as follows:
INSERT INTO <Tablename> (<Attribute list>)
SELECT ... (normal request)
VALUES is replaced by an SQL request. The result of this request is inserted into specified table. If the request
returns a complete tuple in the correct order the attribute list does not need to be stated here either.

1.4.2. Deleting tuples

The DELETE FROM command removes one or more rows (tuples) of a table (relation). The WHERE-clause
specifies which tuples have to be deleted. If it is missing, all tuples are deleted!
The syntax is:
DELETE FROM <Tablename>
WHERE <Condition>;

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

NOTE: If DELETE FROM is used without WHERE, all datasets of this table are deleted. This
is irreversible in most systems.

1.4.3. Updating tuples

The UPDATE command is used to change one or more attribute values of existing tuples. The WHERE-clause
specifies which tuples should be updated. The SET-clause specifies which attributes should be changed and
their new values.

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_insert.swf
http://www.gitta.info/RelQueryLang/en/multimedia/SQL_delete.swf


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  17

The syntax is:
UPDATE <Tablename>
SET Attributevalues
WHERE <Condition>;

Only pictures can be viewed in this version! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

The assignment of the new value happens as follows:
<Attributname> = <Value>
Multiple assingments are separated by commas. The assigned value can either be a constant (absolute term) or
the result of a request, i.e. there can be a request to the right of the equals sign.
If a whole row is updated, the assignment looks as follows:
ROW = ROW(<list of values>)

1.4.4. eLSQL Exercise 'Insert, Delete und Update'

This exercise predominantly addresses the SQL commands INSERT, DELETE, and UPDATE. To complete
the exercise however, the SQL requests from unit "Basic database queries" need to be known as well. During
the following exercise you will work with this sample database. (please leave this overview open during the
exercise). You can also find the overview in the eLSQL Tool on the tab 'Dataset'. The exercise is executed
through a web interface on a MySQL database. Your tutor will provide you the information needed (webaddress
and registration).

Some remarks about eLSQL interface

• The semicolon at the end of a SQL query or SQL command is optional.

• On the tab 'Dataset' you find information about the content of the original database.

• You changes to the database are saved and are available at your next login.

• On the tab 'Settings' you can change your user information and reset the database to its original state.
All your changes will be deleted. Note that this command is irreversible.

• On the tab 'Protocol' you find a list of all your SQL queries.

• Please contact your tutor and not the IFI for technical questions.

Exercises

• You have been hired by a company (represented in the sample database) and have to add yourself in
the table employee. Add at least someone of your family in the according table. Also you should add
some hours of work to one of the projects.
Remark: You don't have to add your birth date since the date format may be a bit complicated!

• Select the columns you added in the different tables.

• Project 20 has been finished. Please delete all entries related to project 20.
How did you proceed and why?

• Beate Tell leaves the company. Her position is taken over by Sonja Maradona. Please make sure that
these changes are made correctly in your company database. Delete all entries that are no longer needed.

http://www.gitta.info/RelQueryLang/en/multimedia/SQL_update.swf
http://www.gitta.info/RelQueryLang/en/multimedia/Datenbasis.html
http://www.gitta.info/RelQueryLang/en/multimedia/Datenbasis.html


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  18

How did you proceed and why?

• All employees who's boss is Boris Frisch get a wage raise of 10'000 Fr.

• Present some other typical database changes (and their solutions) that might have to be done in this
company.

Possible solutions

download solutions

http://www.gitta.info/RelQueryLang/en/download/Loesung_eLSQL2.pdf


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  19

1.5. Usage of SQL
This flash-animation should allow you to exercise all kinds of database queries.
To start the animation, klick on the graphic

Flash-Animation

The data of this exercise can be downloaded as Access-Datenbase. All requests from the exercise can be tested
to find the difference.

http://www.gitta.info/RelQueryLang/en/multimedia/SQL-SelfAss2.mdb


Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  20

1.6. Summary
SQL stands for "Structured Query Language" and is a language to communicate with relational and object
oriented databases. With SQL new tables (relations, schemes) can be created, altered, and deleted using the
commands CREATE TABLE, ALTERTABLEand DROP TABLE. This part of SQL is also known as the
Data Definition Language (DDL). More important in the daily use of SQL are the data query and manipulation
(DML) commands. These commands allow you to INSERT, DELETE, and UPDATE values in the
database. SQL is also used to control access restrictions to the database or to parts of it.



Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  21

1.7. Recommended Reading

• ELMASRI, R.; NAVATHE, S.B., 1994. Fundamentals of Database Systems. 2nd. Redwood City,
California: Addison-Wesley.
Introduction to databases and SQL.



Structured Query Language SQL

http://www.gitta.info - Version from: 7.10.2013  22

1.8. Bibliography

• ELMASRI, R.; NAVATHE, S.B., 1994. Fundamentals of Database Systems. 2nd. Redwood City,
California: Addison-Wesley.

• GULUTZAN, P.; PELZER, T., 1999. SQL-99 Complete, Really. 1nd. Lawrence, USA: R&D Books.


	Structured Query Language SQL
	Table Of Content
	1.1. SQL overview
	1.1.1. SQL Concepts
	1.1.2. Data Definition (DDL)
	1.1.3. Data Manipulation (DML)
	1.1.4. Data control (DCL)

	1.2. Creation and modification of tables
	1.2.1. Create tables
	1.2.2. Changing the table structure
	1.2.3. Deleting tables

	1.3. Basic database queries
	1.3.1. Select-From-Where
	1.3.2. Multiple conditions
	1.3.3. Comparison operators
	1.3.4. Arithmetical operators
	1.3.5. Nested queries
	1.3.6. Join
	1.3.7. Non-relational constructs
	1.3.8. Set operators
	1.3.9. Summary
	1.3.10. Database queries

	1.4. SQL Insert, Delete and Update
	1.4.1. Inserting tuples
	1.4.2. Deleting tuples
	1.4.3. Updating tuples
	1.4.4. eLSQL Exercise 'Insert, Delete und Update'

	1.5. Usage of SQL
	1.6. Summary
	1.7. Recommended Reading
	1.8. Bibliography

